\(\int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx\) [381]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 165 \[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \arctan \left (\frac {4-3 \sqrt {2}+\left (2-\sqrt {2}\right ) \tan (e+f x)}{2 \sqrt {-7+5 \sqrt {2}} \sqrt {1+\tan (e+f x)}}\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {4+3 \sqrt {2}+\left (2+\sqrt {2}\right ) \tan (e+f x)}{2 \sqrt {7+5 \sqrt {2}} \sqrt {1+\tan (e+f x)}}\right )}{f} \]

[Out]

-2*arctanh((1+tan(f*x+e))^(1/2))/f+1/2*arctan(1/2*(4-3*2^(1/2)+(2-2^(1/2))*tan(f*x+e))/(-7+5*2^(1/2))^(1/2)/(1
+tan(f*x+e))^(1/2))*(-2+2*2^(1/2))^(1/2)/f+1/2*arctanh(1/2*(4+3*2^(1/2)+(2+2^(1/2))*tan(f*x+e))/(7+5*2^(1/2))^
(1/2)/(1+tan(f*x+e))^(1/2))*(2+2*2^(1/2))^(1/2)/f

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3653, 3617, 3616, 209, 213, 3715, 65} \[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {\sqrt {\frac {1}{2} \left (\sqrt {2}-1\right )} \arctan \left (\frac {\left (2-\sqrt {2}\right ) \tan (e+f x)-3 \sqrt {2}+4}{2 \sqrt {5 \sqrt {2}-7} \sqrt {\tan (e+f x)+1}}\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {\tan (e+f x)+1}\right )}{f}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {\left (2+\sqrt {2}\right ) \tan (e+f x)+3 \sqrt {2}+4}{2 \sqrt {7+5 \sqrt {2}} \sqrt {\tan (e+f x)+1}}\right )}{f} \]

[In]

Int[Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]],x]

[Out]

(Sqrt[(-1 + Sqrt[2])/2]*ArcTan[(4 - 3*Sqrt[2] + (2 - Sqrt[2])*Tan[e + f*x])/(2*Sqrt[-7 + 5*Sqrt[2]]*Sqrt[1 + T
an[e + f*x]])])/f - (2*ArcTanh[Sqrt[1 + Tan[e + f*x]]])/f + (Sqrt[(1 + Sqrt[2])/2]*ArcTanh[(4 + 3*Sqrt[2] + (2
 + Sqrt[2])*Tan[e + f*x])/(2*Sqrt[7 + 5*Sqrt[2]]*Sqrt[1 + Tan[e + f*x]])])/f

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3616

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(
d^2/f), Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]
]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[2
*a*c*d - b*(c^2 - d^2), 0]

Rule 3617

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> With[{q =
 Rt[a^2 + b^2, 2]}, Dist[1/(2*q), Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*
x]], x], x] - Dist[1/(2*q), Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]], x
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2
*a*c*d - b*(c^2 - d^2), 0] && (PerfectSquareQ[a^2 + b^2] || RationalQ[a, b, c, d])

Rule 3653

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[d*((b*c
- a*d)/(c^2 + d^2)), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1-\tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx+\int \frac {\cot (e+f x) \left (1+\tan ^2(e+f x)\right )}{\sqrt {1+\tan (e+f x)}} \, dx \\ & = \frac {\int \frac {\sqrt {2}+\left (2-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx}{2 \sqrt {2}}-\frac {\int \frac {-\sqrt {2}+\left (2+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx}{2 \sqrt {2}}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {2 \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\left (4-3 \sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{2 \sqrt {2} \left (2-\sqrt {2}\right )-4 \left (2-\sqrt {2}\right )^2+x^2} \, dx,x,\frac {\sqrt {2}-2 \left (2-\sqrt {2}\right )-\left (2-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}}\right )}{f}+\frac {\left (4+3 \sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{-2 \sqrt {2} \left (2+\sqrt {2}\right )-4 \left (2+\sqrt {2}\right )^2+x^2} \, dx,x,\frac {-\sqrt {2}-2 \left (2+\sqrt {2}\right )-\left (2+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}}\right )}{f} \\ & = \frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \arctan \left (\frac {4-3 \sqrt {2}+\left (2-\sqrt {2}\right ) \tan (e+f x)}{2 \sqrt {-7+5 \sqrt {2}} \sqrt {1+\tan (e+f x)}}\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {4+3 \sqrt {2}+\left (2+\sqrt {2}\right ) \tan (e+f x)}{2 \sqrt {7+5 \sqrt {2}} \sqrt {1+\tan (e+f x)}}\right )}{f} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.47 \[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {-2 \text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )+\sqrt {1-i} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1-i}}\right )+\sqrt {1+i} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1+i}}\right )}{f} \]

[In]

Integrate[Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]],x]

[Out]

(-2*ArcTanh[Sqrt[1 + Tan[e + f*x]]] + Sqrt[1 - I]*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 - I]] + Sqrt[1 + I]*Ar
cTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 + I]])/f

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2128\) vs. \(2(129)=258\).

Time = 97.51 (sec) , antiderivative size = 2129, normalized size of antiderivative = 12.90

method result size
default \(\text {Expression too large to display}\) \(2129\)

[In]

int(cot(f*x+e)*(1+tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*cot(f*x+e)*(2*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*cos(f*x+e)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*
2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*arctan(1
/4*((4+3*2^(1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2
*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1)*(3*2^(1/2)-4))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-ta
n(f*x+e))*(-2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))*2^(1/2)-5*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*a
rctan(1/4*((4+3*2^(1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^
(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1)*(3*2^(1/2)-4))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+
e)-1-tan(f*x+e))*(-2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1
/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^(1/2)*sin(
f*x+e)-3*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*cos(f*x+e)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(
f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*arctan(1/4*((4+3*2^(
1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*
cos(f*x+e)+2*sin(f*x+e)^2+1)*(3*2^(1/2)-4))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e))*(-
2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))+7*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*arctan(1/4*((4+3*2^(1
/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*c
os(f*x+e)+2*sin(f*x+e)^2+1)*(3*2^(1/2)-4))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e))*(-2
+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f
*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*sin(f*x+e)+4*ln(2*cot(f*x+e)*((c
os(f*x+e)+sin(f*x+e))*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-2*cot(f*x+e)-1+2*csc(f*x+e)*((cos(f*x+e)+sin(f*x+e))*
cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))*(cot(f*x+e)^2+cot(f*x+e))^(1/2)*2^(1/2)*(1+2^(1/2))^(1/2)*sin(f*x+e)-6*ln(
2*cot(f*x+e)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-2*cot(f*x+e)-1+2*csc(f*x+e)*((cos(f*x
+e)+sin(f*x+e))*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))*(cot(f*x+e)^2+cot(f*x+e))^(1/2)*(1+2^(1/2))^(1/2)*sin(f*x+
e)+cos(f*x+e)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*si
n(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*arctanh(((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)
*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^(1/2)/(1+2^(1/2))^(1/2))
*2^(1/2)-3*arctanh(((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)
-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^(1/2)/(1+2^(1/2))^(1/2))*((cos(f*x+e)+sin(f*x+e))*cos(f*x+
e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^
(1/2)*sin(f*x+e)-2*cos(f*x+e)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e
)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*arctanh(((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^
(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^(1/2)/(1
+2^(1/2))^(1/2))+4*arctanh(((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2
*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*2^(1/2)/(1+2^(1/2))^(1/2))*((cos(f*x+e)+sin(f*x+e))*
cos(f*x+e)/(2*2^(1/2)*cos(f*x+e)*sin(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^
(1/2)*sin(f*x+e))*(1+tan(f*x+e))^(1/2)/(cos(f*x+e)+1)/((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1
/2)/(cot(f*x+e)^2+cot(f*x+e))^(1/2)*2^(1/2)/(3*2^(1/2)-4)/(1+2^(1/2))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 260 vs. \(2 (127) = 254\).

Time = 0.26 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.58 \[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) - f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (-f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) + f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) - f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (-f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) - 2 \, \log \left (\sqrt {\tan \left (f x + e\right ) + 1} + 1\right ) + 2 \, \log \left (\sqrt {\tan \left (f x + e\right ) + 1} - 1\right )}{2 \, f} \]

[In]

integrate(cot(f*x+e)*(1+tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/2*(f*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2)*log(f*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2) + sqrt(tan(f*x + e) + 1)) - f*s
qrt((f^2*sqrt(-1/f^4) + 1)/f^2)*log(-f*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2) + sqrt(tan(f*x + e) + 1)) + f*sqrt(-(f
^2*sqrt(-1/f^4) - 1)/f^2)*log(f*sqrt(-(f^2*sqrt(-1/f^4) - 1)/f^2) + sqrt(tan(f*x + e) + 1)) - f*sqrt(-(f^2*sqr
t(-1/f^4) - 1)/f^2)*log(-f*sqrt(-(f^2*sqrt(-1/f^4) - 1)/f^2) + sqrt(tan(f*x + e) + 1)) - 2*log(sqrt(tan(f*x +
e) + 1) + 1) + 2*log(sqrt(tan(f*x + e) + 1) - 1))/f

Sympy [F]

\[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int \sqrt {\tan {\left (e + f x \right )} + 1} \cot {\left (e + f x \right )}\, dx \]

[In]

integrate(cot(f*x+e)*(1+tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(tan(e + f*x) + 1)*cot(e + f*x), x)

Maxima [F]

\[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int { \sqrt {\tan \left (f x + e\right ) + 1} \cot \left (f x + e\right ) \,d x } \]

[In]

integrate(cot(f*x+e)*(1+tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(f*x + e) + 1)*cot(f*x + e), x)

Giac [F]

\[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int { \sqrt {\tan \left (f x + e\right ) + 1} \cot \left (f x + e\right ) \,d x } \]

[In]

integrate(cot(f*x+e)*(1+tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(tan(f*x + e) + 1)*cot(f*x + e), x)

Mupad [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.55 \[ \int \cot (e+f x) \sqrt {1+\tan (e+f x)} \, dx=-\frac {2\,\mathrm {atanh}\left (\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\right )}{f}-\mathrm {atan}\left (f\,\sqrt {\frac {\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1+1{}\mathrm {i}\right )\right )\,\sqrt {\frac {\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i}+2\,\mathrm {atanh}\left (f\,\sqrt {\frac {\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1+1{}\mathrm {i}\right )\right )\,\sqrt {\frac {\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}} \]

[In]

int(cot(e + f*x)*(tan(e + f*x) + 1)^(1/2),x)

[Out]

2*atanh(f*((1/4 - 1i/4)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*(1 + 1i))*((1/4 - 1i/4)/f^2)^(1/2) - atan(f*((1/4
+ 1i/4)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*(1 + 1i))*((1/4 + 1i/4)/f^2)^(1/2)*2i - (2*atanh((tan(e + f*x) + 1
)^(1/2)))/f